Airborne Wind Energy (AWE) is accelerating towards commercialisation as two technology developers attract global investment through crowdfunding initiatives, reports Airborne Wind Europe (AWE).
The Brussels-based trade body said latest funding rounds from EnerKite and Kitemill have attracted a combined €2million with more than 1000 investors globally.
A recent white paper conducted by BVG Associates, on behalf of Airborne Wind Europe, projecting the AWE market to reach around $100bn (€92.39bn) by 2035–40 and several hundreds of billions soon after. Based on the assumption that AWE follows the same trend as the established wind turbine market 40 years ago, BVG further estimates the cumulative global deployment of AWE could reach 5GW by 2035 and at least 177GW by 2050.
New AWE technology offers a series of benefits compared to traditional wind energy systems. Research indicates that harvestable high-altitude wind power is around 4.5 times stronger than ground level resources. AWE also allows for continuous adjustment of harvesting altitude seeking the best available wind resource. This high-capacity factor ensures a more consistent and stable energy supply alleviating intermittency issues experienced by more established renewables, and supporting future hybrid energy models.
In addition, AWE reduces material consumption by up to 90%, for example replacing wind turbine towers with lightweight tethers.
Another strong benefit is the versatility of AWE technology. Being scalable from a few kilowatt to several megawatt, the systems are suitable for a broad range of markets including offshore repowering, floating offshore, mountainous and remote locations.
A recent white paper conducted by BVG Associates, on behalf of Airborne Wind Europe, projecting the AWE market to reach around $100bn (€92.39bn) by 2035–40 and several hundreds of billions soon after. Based on the assumption that AWE follows the same trend as the established wind turbine market 40 years ago, BVG further estimates the cumulative global deployment of AWE could reach 5GW by 2035 and at least 177GW by 2050.
New AWE technology offers a series of benefits compared to traditional wind energy systems. Research indicates that harvestable high-altitude wind power is around 4.5 times stronger than ground level resources. AWE also allows for continuous adjustment of harvesting altitude seeking the best available wind resource. This high-capacity factor ensures a more consistent and stable energy supply alleviating intermittency issues experienced by more established renewables, and supporting future hybrid energy models.
In addition, AWE reduces material consumption by up to 90%, for example replacing wind turbine towers with lightweight tethers.
Another strong benefit is the versatility of AWE technology. Being scalable from a few kilowatt to several megawatt, the systems are suitable for a broad range of markets including offshore repowering, floating offshore, mountainous and remote locations.