
The scope of the new data summary is inclusive of co-located hybrid plants that pair two or more generators and/or that pair generation with storage at a single point of interconnection, and also full hybrids that feature co-location and co-control. ‘Virtual’ hybrids that do not include co-location are excluded. The focus is on larger, 1 MW+ systems: smaller (often behind-the-meter) projects are also increasingly common, but are not included in the data synthesis.
Based in part on EIA Form 860 data, there were at least 125 co-located hybrid plants (>1 MW) already operating across the United States at the end of 2019, totaling over 14 GW of aggregate capacity.
Some of the most common configurations include wind+storage (13 projects, 1,290 MW wind, 184 MW storage), PV+storage (40 projects, 882 MW PV, 169 MW storage), and fossil+storage (10 projects, 2,414 MW fossil, 91 MW storage). But many other configurations exist, for example, fossil+PV, fossil+wind, wind+PV, hydro+storage, geothermal+PV, CSP+storage, and more. Wind hybrids have been most common in ERCOT and PJM, with PV hybrids sprouting first in the non-ISO West, ERCOT, and Southeast.