Wind energy researchers from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) are among a team of authors inviting the scientific community to address three challenges that will drive the innovation needed for wind to become one of the world’s primary sources of low-cost electricity generation.
In fall 2017, NREL convened more than 70 wind experts representing 15 countries to discuss a future electricity system where wind could serve the global demand for clean energy. Based on this workshop, article lead authors Veers, NREL Group Research Manager Eric Lantz, and Katherine Dykes of the Technical University of Denmark identified three “grand challenges” in wind energy research that require further progress from the scientific community.
First grand challenge: Improved understanding of the wind resource and flow in the region of the atmosphere where wind power plants operate.
As wind turbines increase in height to capture greater energy resource and wind plants spread over greater distances, we need to understand the dynamics of wind at these elevations and scales.
As wind turbines increase in height to capture greater energy resource and wind plants spread over greater distances, we need to understand the dynamics of wind at these elevations and scales.
Second grand challenge: Addressing the structural and system dynamics of the largest rotating machines in the world.
As machines continue getting larger, new materials and manufacturing processes are needed to address the emerging issues of scalability, transportation, and recycling.
As machines continue getting larger, new materials and manufacturing processes are needed to address the emerging issues of scalability, transportation, and recycling.
Third grand challenge: Designing and operating wind power plants to support and foster grid reliability and resiliency.
High wind and solar penetrations will drastically change the electricity grids of the future. Wind can provide essential grid services, such as frequency control, ramping, and voltage regulation. Innovative controls could leverage the attributes of wind turbines to optimize plant energy output while supplying these essential services.
High wind and solar penetrations will drastically change the electricity grids of the future. Wind can provide essential grid services, such as frequency control, ramping, and voltage regulation. Innovative controls could leverage the attributes of wind turbines to optimize plant energy output while supplying these essential services.
These wind research grand challenges build on each other. Characterizing the wind power plant operating zone in the atmosphere will be essential to making progress in designing the next generation of even larger low-cost wind turbines. Understanding both dynamic control of the machines and forecasting the nature of the atmospheric inflow will enable the control of the plant needed for grid support.